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Abstract-The expression for turbulent Prandtl number obtained from the ~no~ali~tion group 
procedure is used to describe the process of heat transfer in turbulent pipe flow. The results are in a good 
agreement with experimental data over the entire range of experimentally accessible Prandtl numbers, 

1o-2 < CT” < 106. 

1. INTRODUCTION 

THE PROBLEM of heat conduction in turbulent flows 
has been under intensive study for more than half a 
century. Experimental data on velocity and 
temperature distributions have suggested many semi- 
empiricai theories to describe the basic properties of 
the phenomenon. 

It has long been real&d that, if the Reynolds 
number is large enough and the Prandtl number 
o,, = Y&~ is not too small, the molecular diffusivity 
q, does not play any role in the process of heat 
conduction or diffusion in turbulence. In this case, the 
temperature and velocity distributions have similar 
behavior in the wall region, both obeying the 
logarithmic law with the temperature profile 

Here ( > denotes a horizontal average, y is the 
distance to the wall, q denotes the constant heat tlux 
and cp and u* are the heat capacity and friction 
velocity, respectively. The Van Karman constant 
b zz 0.4 and cturb = vturb/~t,~tb is the ratio of turbulent 
viscosity to turbulent heat conductivity. According to 
the well-known Prandtl-Reynolds-Colbum analogy, 
the turbulent Prandtl number is nearly a universal 
constant: oturb = 0.74.9. 

In the limiting case of small Prandtl number, the 
molecular diffusivity K~ cannot be neglected and the 
simple analogy between temperature and velocity 
distributions does not work. It is clear, however, that 
as ciO + 0, the Nusselt number Nu [defined below as 
the dimensionless (based on the bulk temperature, see 
equation (28)) heat flux] satisfies Nu z const. It is 
known from experiments that Nu x: 6.8-7.0 in flows 
with constant heat flux through the wall while Nu is 
somewhat smaller in flows with constant wall 
temperature. To the best of our knowledge, there is no 
satisfactory theory describing heat conductivity in 
turbulent flow with low Prandtl number. 

Many attempts have been made to find empirical 
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and semi-empirical relations to describe turbulent 
heat transfer across a wide range of Prandtl and 
Reynolds numbers. More than 30 formulae of this 
kind have been reviewed by Reynolds [l] in 1975. In 
1979, Gori et al. [2] concluded that there is no general 
way to describe turbulent heat transfer in Iow-Prandtl- 
number fluids for a wide range of Re. They suggested 
the following formula for the turbulent Prandtl 
number aturb when Re < 1.7x 105: 

c&:, = 0.0 14Re0.45a;.2 

x{1-exp[-(0.014Re0~4”a~~2)-1]} (1) 

as proposed by Aoki [3] or 

cr,k = (l+ 100Pe-0~5)[(1+ 120Re-0~5)-’ -O.lS] 

(2) 

as proposed by Reynolds [l]. The formula 

(T&&, = 0.85 +o.OOso, ’ (3) 

proposed by Jischa and Rieke [4], was suggested to 
represent the Reynolds number range 1.7 x 10’ < Re 

< 2.6 x 105; the constant gturb = 0.85 was used for 
Re > 2.6 x 105. When relations (i)-(3) are used to 
predict the mean temperature field, they give 
reasonably accurate predictions of the Nusselt number 
(which is related to the wall gradient of the 
temperature profile). However, the full temperature 
profiles predicted on the basis of expressions (l)-(3) 
were less satisfactory. 

In this work we apply a formula for the turbulent 
Prandtl number derived by Yakhot and Orszag [S] to 
describe heat transfer in pipe flows. It will be shown in 
Section 3 that the proposed relation between turbulent 
viscosity and turbulent heat conductivity gives 
accurate predictions of both Nusselt number and 
temperature distributions across an extremely wide 
range of Prandtl and Nusselt numbers. 

2. FORMULAE FOR TURBULENT 
PRANDTL NUMBER 

Here we present some of the basic ideas leading to 
an expression for the turbulent Prandtl number. The 
main steps ofthe reno~ali~tion group procedure are 
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A 
B 

Ad 
C 

Van Driest parameter 
proportionality coefficient in 
x-coordinate dependence of 
temperature, equation (20) 

geometric factor, equation (11) 
constant in the temperature profile, 
equation (30) 

ctl 
D 
GO 
NU 

heat transfer coefficient 
pipe diameter 

Pe 
R 
Re 

bare propagator for velocity 

Nusselt number (based on the bulk 
temperature), C,cr,Re 

P&let number, a,Re 

radius of pipe 

T 

T, 
T, 
T, 
T+ 
a,b 
CP 
d 

Reynolds number based on the pipe 
diameter, CL,, D/v, 

Reynolds number based on the 
friction velocity, u* R/v, 

temperature 
temperature at the center 
temperature at the wall 

characteristic temperature, q/c, pu, 

dimensionless temperature, T/T, 

parameters in equations (12)-( 14) 
heat capacity 

fixed-point parameter [S], 7 in this 
work 

go bare propagator for temperature 

outlined in 
calculations are given elsewhere [5]. In this paper, we 

the Appendix. The details of the 

are interested in application of the final result to the 
problem of heat transfer in turbulent flow in a pipe. 
This will be done in the next section. 
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NOMENCLATURE 

4 

r+ 
u 

a* 
n+ 
c’i 

heat flux 

wall coordinate, ru,/v, 

mean velocity in x-direction 
friction velocity 
dimensionless velocity, u/u, 
components of velocity. 

Greek symbols 

@+ 
CT 

00 

E 

E 
K 

Ko 
a. 
10 

4 
P 
V 

VO 
v+ 

The most distinguishing characteristic of a 
turbulent flow is approximate universality of the 
properties of scales much smaller than any integral 
scale L in the flow. The high Reynolds number 
turbulent flow is characterized by three different 
ranges of spatial scales. (1) For wave-numbers k > x/L 

the energy spectrum is strongly anisotropic and is not 
characterized in any universal way. The integral scale 
reflects both geometry of the flow and the physico- 
chemical processes taking place there. (2) At much 
smaller scales, with wave-numbers satisfying n/L < k 

< k, = Re3j4L- ‘, the velocity fluctuation spectrum is 
approximately given by the Kolmogorov energy 
spectrum E(k) = C,E2/3kK5/3, with the Kolmogorov 
constant C, = 1.3-2.3. (3) In the dissipation range 
(k > kd) the energy spectrum decreases exponentially 
with k. 

Universality of the small scales can be formulated in 
the language of theoretical hydrodynamics: the fluid 

inverse total Prandtl number 

inverse molecular Prandtl number 
r-dependent component of 

temperature 
dimensionless 0, O/T, 

total Prandtl number, V/K 

molecular Prandtl number, VO/KO 

expansion parameter in RNG 
procedure 
turbulent dissipation rate 
total diffusivity, tie + ~~~~~ 
molecular diffusivity 

friction coefficient, 8r,/pu& 

expansion parameter 
integral scale of turbulence 

fluid density 
total viscosity, v. + blturb 
molecular viscosity 
dimensionless total viscosity, L~/v~. 

avi avi 
described by the Navier-Stokes equation 

a%. 
t+vjax = --‘I)+vo+- 

J axi cxjaxj 
(4) 

“i_o - 
axi 

subject to initial and boundary conditions, is 

characterized at the small scales by the 5/3- 
Kolmogorov spectrum. This property does not 
depend on boundary conditions which are usually 
characterized at large scales. Boundary conditions can 
be considered from the viewpoint of small scales as a 
source of energy injected into the large scales which 
subsequently cascade to the small scales. Using the 
analogy with equilibrium statistical mechanics, in 
which the results are independent of the details of the 
interaction of the system with a heat bath, we replace 
(4) by the more general equation (5) and add the heat 
transfer equation (6): 

at+ d2t’, m+vjs = J-gfvoL 
axj axj 

I I 

(5) 

&i_ 
axi - 

0 
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aT dT d2T 
yy+Viz = Kg- 

I axi axi (6) 

where f is the random force (noise) chosen to generate 
the velocity field v described by the Kolmogorov 
spectrum in the limit of large wave-vectors (small 
scales). 

It has been shown by Yakhot [8] that the Gaussian 
random force f characterized by the correlation 
function : 

Mkw)&(k’,4) z Ek -3Pij(k)s(k + k’)6(o +o’) (7) 

with Pij(k) = aij - ki kj/k2, generates small-scale 
velocity fluctuations characterized by the Kol- 
mogorov spectrum. The parameter E in (7) denotes the 
dissipation rate of the turbulent energy per unit mass 
of the fluid and relates the force f, acting on small 
scales, to the energy input taking place at large scales. 

This fact is the basis for using the random force (7) 
for elimination of small scales in the construction of 
either turbulent sub-grid or transport models. The 
renormalization-group method (RNG) was developed 
for an infinite, homogeneous medium by Forster et al. 
[6], Martin and DeDominics [7] and Yakhot [8]. In 

these works, E has been treated as a given parameter 
characterizing the rate of stirring. In finite systems 

Z=;+. dt s(x,t)dx 
ss 

(8) 

(9) 

In such systems, E is a quantity that should be 
determined dynamically from the equations of motion 
with boundary and initial conditions applied. The 
basic ideas of the renormalization group procedure are 

given in the Appendix. 
It has been shown by Yakhot and Orszag [9] that 

the Navier-Stokes equations for the mean velocity 

field Oi in which the fluctuating contributions are 
removed is : 

do, av, ap a avi 
x+cjsx= --+-v-. 

axi axj axj 
J 

(10) 

Here the total viscosity v takes into account both 
molecular and turbulent contributions and is given by 
the following relation [9] : 

v= v,[l+$$+O)]“” (11) 

where the ramp function H(x) = x if x > 0 and 

H(x) = 0 if x < 0 and A, is the inverse integral scale 
of turbulence [9]. The parameter & = (& -d)/ 

[2d(d+ 2)] = 0.333 since d = 7 for this problem. It has 
been shown by Yakhot and Orszag [5] that 
elimination of small scales from the equations (4H6) 
of a passive scalar leads to the following relation 
between the inverse total Prandtl number CI = 0-i and 
the total viscosity v: 

where 
a+1 

Y=a+b 

a=[-l+(1+8$2)“2]/2 (13) 

b=a+l. 

For d = 7, relation (12) becomes 

The result (14) expresses the inverse total Prandtl 

number t( as a function of total viscosity 18 and is the 
main result to be studied in this paper. 

According to (1 l), the turbulent viscosity is itself a 

function of the distance from the wall since Ar must be 

associated with the distance to the wall. One sees that 
in the region of fully developed turbulence where 
vo/v < 1, the total Prandtl number u = c( ’ = 0.8476, 
which is in a good agreement with available 
experimental data 0 = 0.74.9 (see Landau and 

Lifshitz [lo] and Monin and Yaglom [ 111). Close to 
the wall where v z vo, one finds from (14) that 

CJ z vo/ko. Thus, the equation of motion for the mean 
temperature can be written as: 

(15) 

where K = cw is determined from (14). The dynamics of 
diffusion of a passive scalar is governed by the set of 
equations (lo), (1 l), (14), (15). 

We emphasize that these results do not include any 
experimentally adjustable parameters. 

3. HEAT CONDUCTIVITY IN PIPE FLOW 

Here we apply the results presented in the previous 

section to describe the process of heat transfer in 
turbulent flow through a pipe of radius R. The 
problem can be formulated in terms of the stationary 
Navier-Stokes equation 

1 d du i;p 
-- r\'_ =_ 
r ar ( > Sr SX 

and the heat transfer equation 

(16) 

(17) 

where v and K are total viscosity and diffusivity, 
respectively. The parameters v and K include both 
molecular and turbulent contributions. The total 
Prandtl number cr = V/K is determined from 
relation (14). 

We introduce the friction velocity u* = (t,/p)1’2, 
wall coordinate r + , nondimensional velocity u + , and 
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nondimensional total viscosity v+ : parameter T, is defined as follows: 

r U* + = r-, u, = u/u,, v+ = v/vO. (18) 
vo 

T,=--4-. 
5 PM* 

(27) 

The equation of motion now has the Using the above notation, the Nusselt number is 
nondimensional form: given by 

$&(r+v+z)= -e (19) 

where R, = u.+R/v, is the Reynolds number based on 
the friction velocity. 

We consider heat transfer in a pipe with constant 
heat flux through the wall. In this case it is convenient 

to introduce a new variable 0 defined as: 

T(x,r) = O(r)+Bx. (20) 

Substituting (20) into (17) yields an equation for O(r): 

Id ao 
-- w- = uB. 
r or ( > dr 

(21) 

The parameter B can be expressed in terms of the 
imposed constant heat flux. Integrating (2 1) over r and 
using the fact that 

d@ 
-=O atr=O 
dr 

(22) 

we obtain : 
49 BE -~ 

cP pRevo 
where 

4 = -c,p~,@Olar),,, 

and the Reynolds number 

(23) 

(24) 

u(r)r dr (25) 

Using relations (23)(25) the heat equation (21) can be 
written in the nondimensional form: 

(26) 

where 0 + = O/T, and c( is given by relation (14). The 

0.10 r 

where 
Nu = C,o,Re (28) 

To describe heat transfer in turbulence, one needs 
an expression for the coefficient of heat conductivity 
which takes into account both molecular and 

turbulent contributions to the heat transfer process. 
The theory leading to relation (14) determines the 
turbulent diffusivity in terms of the laminar transport 
coefficients and the turbulent viscosity. In particular, 

it describes the interaction between molecular and 
turbulent transport, an effect of much significance at 

low Re and co. Thus, the determination of turbulent 
heat transfer from (14) requires reliable data on 

turbulent viscosity. Such data can be found either from 
theory or from analysis of experimental data on 
velocity profiles in pipe flow. 

In the present work we are interested exclusively in 
demonstrating the power of the ‘universal’ relation 
(14) provided the expression for turbulent viscosity is 

known. Thus, we adopt the ad hoc model [12] for the 
dimensionless total viscosity v+ : 

Y+ = 1+0.41y+[l-exp(-y</A2)], A = 26 

when the distance to the wall y, < 50. The turbulent 
viscosity for y+ > 50 is that derived from the 

differential k-E model of Yakhot and Orszag [5]. The 
model viscosity and mean velocity profiles obtained by 
integrating the equation of motion (19) using this 
viscosity are presented in Figs. 1 and 2. The friction 
coefficient i defined by TV = ipi&/ so 
I = 32(R,/Re)’ is plotted in Fig. 3. It is apparent that 
the agreement with experimental data is very good. 

The equation of motion (19) and heat equation (26) 

0.06 - 

u 
Kdkl 

0.04 - 

FIG. 1. Viscosity distribution in a pipe adopted in this work: x Re = 40,000; 0 Re = 346,000. 
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FIG. 4. Dimensionless temperature profile T+ = T/T,: x 
results of calculations; 0 experimental data [ 111. 

Calculated dimensionless velocity profile, 
IO’ 

oil = 0.7 
u - u/u,; Re = 40,000. +- 

---- Nu =0.018 Re’.’ /’ 

.r/’ 

__ x_o.316 
Re”4 

0.81 , ,,,I , 1 ,,I , , ,,I , , ,,I 

IO' IO4 IO5 106 IO’ 
Re 

FIG. 3. Friction coefficient i for turbulent pipe flow: x 
results of calculation based on the model viscosity from Fig. 

1; ~~--- Blasius formula. 

have been integrated using the model viscosity from 
Fig. 1 and CI from the relation (14). The results are 
presented in Figs. 410 for various Prandtl (cJ~) and 
Reynolds (Re) numbers. 

In Fig. 4, we plot the calculated and measured 
temperature profiles for air flow in a pipe. As we can 

see from Fig. 4, the agreement between the 
experimental data and the results of calculations for 
G,, = 0.7 is very good. The calculated Nusselt number 
for air flow (go = 0.7) is compared in Fig. 5 with the 

7’ 
,b’ 

Nu IO’- 

,/= 

/SC 

,a’ 
/ 

/ 
/ 

x’ 

,050 3 4 5x104 105 5x105 

Re 

FIG. 5. Nusselt number NM as a function of Reynolds 
number Re = ~,,D/Y,, for the air flow (crO = 0.7) in a pipe: x 
results of calculations; -~--~ empirical relation 

Nu = 0.018Re0.s. 

empirical relation widely used in the literature [l 11: 

Nu = 0.018Re0~8. (29) 

The prediction of turbulent heat transfer in low- 
Prandtl-number flow is a most difficult test for the 

model. In Fig. 6, the calculated temperature profiles in 
liquid mercury (o. = 0.02) and in the NaK eutectic 
(cro = 0.029) are plotted for pipe flow at Re = 149,000. 

30- 
x+Red49000 c0 = 0.7 

25- o- Re.149000 cc, = 0.029 
0 -Re.149000 ao = 0.02 

20 - 

T+ 
15 - 

-24 +4.85 log Y+ 

y+ 
FIG. 6. Dimensionless temperature (T+) profiles in turbulent flow in a pipe at Re = 149,000: x air 

(a0 = 0.7); o NaK eutectic (u,, = 0.029); q mercury (a0 = 0.02); ~ from ref. [13]. 
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FIG. 7. Temperature defect (T, - T)/(Tw - T,) distribution in 
turbulent flow in a pipe: x results of calculation for NaK 
eutectic (a0 = 0.019); ~~~~~ experimental data of ref. [13]. 

It is apparent that some fraction of the temperature 
profile (~1, = 100) can be approximated by the 

logarithmic law: 

7-+ = C+4.85logy+ (30) 

where the constant C can be found from the relation: 

C= 3.1+31n0,. (31) 

A relation very similar to (3 1) has been obtained from 

analysis of experimental data [l I]. 
It should be mentioned that when the Prandtl 

number is small (or, = 0.02) the logarithmic part of the 

temperature profile appears only at high Reynolds 
numbers: Re > 105. For Re < lo’, no part of the 

temperature profile can be approximated by the 
relation (30). 

The results of our calculations may be compared 
with the experimental data of Buhr et al. [13]. The 
temperature profile measured in the NaK eutectic flow 

(a0 = 0.019) at Re 2 4x lo4 is compared with the 
present results in Fig. 7. In Fig. 8, we plot calculated 
and experimental data for the temperature profiles in 
several low-Prandtl-number fluids at different 
Reynolds numbers in the range 3 x lo4 < Re 
< 3.5 x 105. Again, the agreement between the results 
of calculations and experimental data is very good. 

The Nusselt number Nu is plotted as a function of the 
P&let number Pe = c,Re in Fig. 9. At low Pe, the 

1.0 1.0 

0.9 0.6 

T,.,-T 

T,-Tc 

0.1 
/Y/R = 0.05 

I II I I I II I I 

-Jo,, 

104 105 
Re 

FIG. 8. Temperature defect (T, - T)/(Tw - T,) distribution in 
turbulent flow in a pipe as a function of Reynolds number Re: 
0 result of calculation; __ experimental data of ref. [13]. 

- THEORY 
x EXP. (REF. 13 ) 

_ 0 EXP. (REF. 14 ) 
Nub6.74 (Pe+0) 

/ 

$ 
NU 

l 

FIG. 9. Nusselt number NN as a function of Pellet number 
Pe. Nu z 6.74 when Pe rr 0. 

results of numerical calculations give Nu z 6.74. This 
is very close to the experimentally observed [13,14] 
limiting Nusselt number Nu z 6.8-7.0. 

NU 

IO2 1x1 Re 202000 

[ @ Re 9800 

IO ' L 1 I , \ 
100 IO 102 103 104 105 106 

UO 

FIG. 10. Nusselt number Nu as a function of Prandtl number eO. Experimental data are taken from 
ref. [ll]. 
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Another test of both the relation (14) and of the 

model for turbulent viscosity adopted in this work is 
the prediction of heat transfer in high-Prandtl-number 

fluids. In this case, the molecular heat diffusivity is 
very low and the heat transfer process is determined 
entirely by the turbulent eddy diffusivity. The results of 
calculations are compared with experimental data in 

Fig. 10. The agreement with the results of 
measurements [ 1 l] is very good across a wide range of 
Prandtl and Reynolds numbers, 1 < e0 < lo6 and 
2.5 x lo4 < Re < 2 x 105. 

We conclude that the relation (14) can be used for 
the accurate description of turbulent heat transfer 

throughout the entire range of experimentally 
accessible Prandtl numbers, which vary over eight 
orders of magnitude, i.e. lo-’ < co < 106. 
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Note added in prooS-_In more recent work on the 
development ofthe RNG method (see ref. [5]), we have found 
that the proper technique is to evaluate all constants at the 
physical dimension d = 3 to lowest order in an expansion in 
powers of E rather than at the critical dimension d = 7. This 
modification changes the turbulent Prandtl number to 0.7179 
and changes the results presented here by several percent. 
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APPENDIX 

In this Appendix we‘.will introduce the scale elimination 
procedure leading to renormalization of molecular viscosity 
v0 and molecular diffusivity kg. Using the incompressibility 
condition we write the equations of motion for the Fourier 

components of velocity oi(k, w) and passive scalar T(k, co) as 
(see refs. [5-93): 

u,(k) = G%)X(k^) 

-; G’(k)P,,,(k) 
s 

d4 
u,(&(k^-G)---- (2n)d+, ‘(Al) 

T(k) = - ig’(k^)k, 
s 

d4 u,(cj)T(k -4) ~. 
(2a)d’ I ’ 

ii = (k&J) 

W) 
where d is the dimensionality of the space 

G’(k) = (-io+v,k*))’ (A3) 

go(k) = (-iiw+kOk2))i (A4) 

and the random force f is given by the correlation function: 

(f,(k^)f;(k^‘)) = (27~)~+~2D~k-“P~~(k)6(k^+k^I). (A5) 

The projection operator P,,,,_ is defined as P,,.(k) = 
k, P,,(k)+ k, P,,(k). Here y = 3 and Do cc E. 

The equations of motion (A 1) and (A2) are dehned on the 
domain 0 < k <A. The RNG procedure consists of two 
steps. First, we write equations in terms-of the velocity field 
decomposition on two components u’(k) and u<(k) defined 
on the intervals Ae-’ < k <A and 0 < k < Ae-‘. 
respectively (1, = 1): 

vi(k) = G”1;(/+$ G’P,,,(k) 
I 

[u,‘(tj)u.‘(k-tj) 

(‘46) 

T(k) = -i~,k,g’(k^) 
s 

[u:(cj)T<(k^-tj)+u;(e)T<(k^-4) 

d4 +u:(d)T>(k^-B)+u;(B)T’(k^-~)]~. 

In order to eliminate modes from the interval Ae-’ < k < A, 
all terms UC&), T>(k) should be removed by repeated 
substitution of (A6) for u’, T’ back into (A6). This generates 
infinite expansions for v<, T< in powers of 1, in which 
u’, T> do not formally appear. Next, averages are taken 
over the part of the random force f’ belonging to the strip 
Ae-’ < k < A. This procedure formally eliminates the modes 
he-’ < k < A from the problem. 

It follows from (A6) that, after removing the modes 
Ae-’ i k < A, the equation of motion for u<, T< can be 
written up to second order in I, as: 

( -io+vok2)ut<(k) 

=X(k)-$P,,,(k) f.‘(4)f(k^-8)~-~P,.,(k) 
s 

* 

x u;(4)u,‘(.&<) 
s 

d4 “o * 
~+4 + 
(2n)d’ ’ ( > 

ZD,P,,,(k) 

x ~G”($)~‘Go(f-B)P.,,(k-~)P.,(~)~-’~,(~)~ 
s 

+O(U’)~. (A7) 

The equation for T<(k) is: ’ 

(-iw+tc,k’)T<(k) 

= -il,k, 
s 

v:(cj)T<(k^-tj) p-2$D,T<(k)k,k, 
(2$+’ 

dB 
x ~G”(d)~*go(k-B)P&)~~ 

s 
(‘48) 

When the O(I,$ terms on the RHS of (A7) and (AS), which are 
O(k*u) and O(k*T), respectively, are moved to the LHS, it 
gives corrections to the bare viscosity vok2 and diffusivity 
tc,k’ : 

lzD eLI- 1 
Av= A&--- 

0 E 
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and 

where 

6’ - 1 &KdA@_ 
"o(Ko+I'o) E 

E = 4+y-d 

d2-d-c S, 
,&---------p 

2d(d + 2) (2Q’ 

2iTd’Z d-l S, 
K,=---,; S,=---. 

d (27~) Ud/2) 

The parameter d = 7 at the fixed point. Thus, elimination of 
small scales leads to renormalization of viscosity and 
diffusivity. The second step of the procedure consists of 
iterating the scale-elimination procedure. This leads to the 
results given in Section 2. 

TRANSFERT THERMIQUE DANS LES ECOULEMENTS TURBULENT% 
I. ECOULEMENT DANS UN TUBE 

Rbum&L’expression du nombre de Prandtl turbulent obtenue a partir dune procedure de groupe de 
renormalisation est utiliste pour decrire le mecanisme du transfert thermique dans l’ecoulement turbulent 
dans un tube. Les resultats sont en bon accord avec des donnCs experimentales dans le domaine des 

nombres de Prandtl lo-’ < co < IO6 accessibles experimentalement. 

WARMEtiBERGANG IN TURBULENTEN FLUIDEN-I. ROHRSTRijMUNG 

Zusammenfassung-Zur Beschreibung des Wirmeiibergangs bei turbulenter Rohrstromung wird der Aus- 
druck fur die turbulente Prandtl-Zahl verwendet, den man aus der Renormalisations-Gruppen-Prozedur 
erhllt. Die Ergebnisse stimmen mit experimentellen Daten im gesamten Bereich der experimentell ver- 

fiigbaren Prandtl-Zahlen, IO-* < crO < 106, gut iiberein. 

TEI-UIOI-IEPEHOC B TYP6YJIEHTHbIX TMAKOCT5IX. TE’IEHRE B TPYBE 

.bmoTawn-&D-i OIIACaHHl TtXIJlOnepeHOCa IIpa TJ'P6YJtCHTHOM TCWHUH B Tpy6e WnOnb3,'eTCZ4 BbIpa- 

XeHHe &lIK Typ6)'neHTHOrO WICna ,+aHJ,TJI,I, IIOny'IeHHOe MeTOnOM peHOpManU3aIWOHHO+i rpynnbl. 

Pe3ynbTaTbI HaXOAffTCIl B XOPOIUeMCOOTBeTCTBUUC3KC~ePHMeHTanbHbIMUnaHHblMU~ll BCerOA.uaIla- 

30Ha 3HaueHuii wcna Hpasnrnr, lo-’ < (re < 106. 


